Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Irradiation-induced defects in InN and GaN studied with positron annihilation

Identifieur interne : 003E16 ( Main/Repository ); précédent : 003E15; suivant : 003E17

Irradiation-induced defects in InN and GaN studied with positron annihilation

Auteurs : RBID : Pascal:10-0292462

Descripteurs français

English descriptors

Abstract

We use positron annihilation to study 2-MeV 4He+ irradiated and subsequently rapid-thermal-annealed InN grown by molecular-beam epitaxy and GaN grown by metal-organic chemical-vapour deposition. The irradiation fluences were in the range 5 x 1014-2 × 1016cm-2. In vacancies are introduced in the irradiation at a low rate of 100cm-1, with their concentration saturating in the mid-1017 cm-3 range at an irradiation fluence of 2 × 1015 cm-2. The annealing, performed at temperatures between 425 and 475 °C, is observed to result in an inhomogeneous redistribution of the In vacancies. The behaviour is opposite to GaN, where Ga vacancies are introduced at a much higher rate of 3600 cm-1 showing no detectable saturation. About half of the Ga vacancies are found to recover in the annealing, in agreement with previous studies, while the remaining Ga vacancies undergo no spatial redistribution.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:10-0292462

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Irradiation-induced defects in InN and GaN studied with positron annihilation</title>
<author>
<name sortKey="Reurings, Floris" uniqKey="Reurings F">Floris Reurings</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Applied Physics, Aalto University, PO Box 11100</s1>
<s2>00076 Aalto Espoo</s2>
<s3>FIN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Finlande</country>
<wicri:noRegion>00076 Aalto Espoo</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tuomisto, Filip" uniqKey="Tuomisto F">Filip Tuomisto</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Applied Physics, Aalto University, PO Box 11100</s1>
<s2>00076 Aalto Espoo</s2>
<s3>FIN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Finlande</country>
<wicri:noRegion>00076 Aalto Espoo</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Egger, Werner" uniqKey="Egger W">Werner Egger</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Institute für Angewandte Physik und Messtechnik, Universität der Bundeswehr München</s1>
<s2>87755 Neubiberg</s2>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>87755 Neubiberg</wicri:noRegion>
<wicri:noRegion>Universität der Bundeswehr München</wicri:noRegion>
<wicri:noRegion>87755 Neubiberg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lowe, Benjamin" uniqKey="Lowe B">Benjamin Löwe</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Institute für Angewandte Physik und Messtechnik, Universität der Bundeswehr München</s1>
<s2>87755 Neubiberg</s2>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>87755 Neubiberg</wicri:noRegion>
<wicri:noRegion>Universität der Bundeswehr München</wicri:noRegion>
<wicri:noRegion>87755 Neubiberg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ravelli, Luca" uniqKey="Ravelli L">Luca Ravelli</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Dipartimento di Fisica, Università degli studi di Trento, via Sommarive 14</s1>
<s2>38123 Povo (TN)</s2>
<s3>ITA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Italie</country>
<wicri:noRegion>38123 Povo (TN)</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sojak, Stanislav" uniqKey="Sojak S">Stanislav Sojak</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Department of Nuclear Physics and Technology, Slovak University of Technology in Bratislava, Ilkovičova 3</s1>
<s2>81219 Bratislava</s2>
<s3>SVK</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Slovaquie</country>
<wicri:noRegion>81219 Bratislava</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liliental Weber, Zuzanna" uniqKey="Liliental Weber Z">Zuzanna Liliental-Weber</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road</s1>
<s2>Berkeley, CA 94720</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Berkeley, CA 94720</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jones, Rebecca E" uniqKey="Jones R">Rebecca E. Jones</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road</s1>
<s2>Berkeley, CA 94720</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Berkeley, CA 94720</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yu, Kin M" uniqKey="Yu K">Kin M. Yu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road</s1>
<s2>Berkeley, CA 94720</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Berkeley, CA 94720</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Walukiewicz, Wladek" uniqKey="Walukiewicz W">Wladek Walukiewicz</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road</s1>
<s2>Berkeley, CA 94720</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Berkeley, CA 94720</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schaff, William J" uniqKey="Schaff W">William J. Schaff</name>
<affiliation wicri:level="1">
<inist:fA14 i1="06">
<s1>Department of Electrical and Computer Engineering, Cornell University, 425 Philips Hall</s1>
<s2>Ithaca, NY 14853</s2>
<s3>USA</s3>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Ithaca, NY 14853</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">10-0292462</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 10-0292462 INIST</idno>
<idno type="RBID">Pascal:10-0292462</idno>
<idno type="wicri:Area/Main/Corpus">004323</idno>
<idno type="wicri:Area/Main/Repository">003E16</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1862-6300</idno>
<title level="j" type="abbreviated">Phys. status solidi, A Appl. mater. sci. : (Print)</title>
<title level="j" type="main">Physica status solidi. A, Applications and materials science : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Fluence</term>
<term>Gallium nitride</term>
<term>Indium nitride</term>
<term>Ion irradiation</term>
<term>Irradiation defect</term>
<term>MOCVD</term>
<term>Molecular beam epitaxy</term>
<term>Positron annihilation</term>
<term>Radiation effects</term>
<term>Rapid thermal annealing</term>
<term>Vacancies</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Défaut irradiation</term>
<term>Annihilation positon</term>
<term>Effet rayonnement</term>
<term>Recuit thermique rapide</term>
<term>Epitaxie jet moléculaire</term>
<term>Méthode MOCVD</term>
<term>Fluence</term>
<term>Lacune</term>
<term>Irradiation ion</term>
<term>Nitrure d'indium</term>
<term>Nitrure de gallium</term>
<term>InN</term>
<term>GaN</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We use positron annihilation to study 2-MeV
<sup>4</sup>
He
<sup>+</sup>
irradiated and subsequently rapid-thermal-annealed InN grown by molecular-beam epitaxy and GaN grown by metal-organic chemical-vapour deposition. The irradiation fluences were in the range 5 x 10
<sup>14</sup>
-2 × 10
<sup>16</sup>
cm
<sup>-2</sup>
. In vacancies are introduced in the irradiation at a low rate of 100cm
<sup>-1</sup>
, with their concentration saturating in the mid-10
<sup>17</sup>
cm
<sup>-3</sup>
range at an irradiation fluence of 2 × 10
<sup>15</sup>
cm
<sup>-2</sup>
. The annealing, performed at temperatures between 425 and 475 °C, is observed to result in an inhomogeneous redistribution of the In vacancies. The behaviour is opposite to GaN, where Ga vacancies are introduced at a much higher rate of 3600 cm
<sup>-1</sup>
showing no detectable saturation. About half of the Ga vacancies are found to recover in the annealing, in agreement with previous studies, while the remaining Ga vacancies undergo no spatial redistribution.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1862-6300</s0>
</fA01>
<fA03 i2="1">
<s0>Phys. status solidi, A Appl. mater. sci. : (Print)</s0>
</fA03>
<fA05>
<s2>207</s2>
</fA05>
<fA06>
<s2>5</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Irradiation-induced defects in InN and GaN studied with positron annihilation</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>REURINGS (Floris)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>TUOMISTO (Filip)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>EGGER (Werner)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>LÖWE (Benjamin)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>RAVELLI (Luca)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>SOJAK (Stanislav)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>LILIENTAL-WEBER (Zuzanna)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>JONES (Rebecca E.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>YU (Kin M.)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>WALUKIEWICZ (Wladek)</s1>
</fA11>
<fA11 i1="11" i2="1">
<s1>SCHAFF (William J.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Applied Physics, Aalto University, PO Box 11100</s1>
<s2>00076 Aalto Espoo</s2>
<s3>FIN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Institute für Angewandte Physik und Messtechnik, Universität der Bundeswehr München</s1>
<s2>87755 Neubiberg</s2>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Dipartimento di Fisica, Università degli studi di Trento, via Sommarive 14</s1>
<s2>38123 Povo (TN)</s2>
<s3>ITA</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Department of Nuclear Physics and Technology, Slovak University of Technology in Bratislava, Ilkovičova 3</s1>
<s2>81219 Bratislava</s2>
<s3>SVK</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road</s1>
<s2>Berkeley, CA 94720</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</fA14>
<fA14 i1="06">
<s1>Department of Electrical and Computer Engineering, Cornell University, 425 Philips Hall</s1>
<s2>Ithaca, NY 14853</s2>
<s3>USA</s3>
<sZ>11 aut.</sZ>
</fA14>
<fA20>
<s1>1087-1090</s1>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>10183A</s2>
<s5>354000192980750120</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2010 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>22 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>10-0292462</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Physica status solidi. A, Applications and materials science : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>DEU</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We use positron annihilation to study 2-MeV
<sup>4</sup>
He
<sup>+</sup>
irradiated and subsequently rapid-thermal-annealed InN grown by molecular-beam epitaxy and GaN grown by metal-organic chemical-vapour deposition. The irradiation fluences were in the range 5 x 10
<sup>14</sup>
-2 × 10
<sup>16</sup>
cm
<sup>-2</sup>
. In vacancies are introduced in the irradiation at a low rate of 100cm
<sup>-1</sup>
, with their concentration saturating in the mid-10
<sup>17</sup>
cm
<sup>-3</sup>
range at an irradiation fluence of 2 × 10
<sup>15</sup>
cm
<sup>-2</sup>
. The annealing, performed at temperatures between 425 and 475 °C, is observed to result in an inhomogeneous redistribution of the In vacancies. The behaviour is opposite to GaN, where Ga vacancies are introduced at a much higher rate of 3600 cm
<sup>-1</sup>
showing no detectable saturation. About half of the Ga vacancies are found to recover in the annealing, in agreement with previous studies, while the remaining Ga vacancies undergo no spatial redistribution.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H70B</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B60A80J</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B60H55L</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Défaut irradiation</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Irradiation defect</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Defecto irradiación</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Annihilation positon</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Positron annihilation</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Effet rayonnement</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Radiation effects</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Recuit thermique rapide</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Rapid thermal annealing</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Epitaxie jet moléculaire</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Molecular beam epitaxy</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Méthode MOCVD</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>MOCVD</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Fluence</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Fluence</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Fluencia</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Lacune</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Vacancies</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Irradiation ion</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Ion irradiation</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Irradiación ión</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Nitrure d'indium</s0>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Indium nitride</s0>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Indio nitruro</s0>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Nitrure de gallium</s0>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Gallium nitride</s0>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Galio nitruro</s0>
<s5>16</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>InN</s0>
<s4>INC</s4>
<s5>52</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>GaN</s0>
<s4>INC</s4>
<s5>53</s5>
</fC03>
<fN21>
<s1>186</s1>
</fN21>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>European Materials Research Society (E-MRS) </s1>
<s3>Warsaw POL</s3>
<s4>2009-09-14</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003E16 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 003E16 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:10-0292462
   |texte=   Irradiation-induced defects in InN and GaN studied with positron annihilation
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024